
Algebraic Characterization of
Regular Languages

Chloe Sheen
Advised by Professor Steven Lindell

A Thesis Presented in Partial Fulfillment of
Bachelor’s Degree

Department of Computer Science

Bryn Mawr College



Abstract

This paper presents the proof provided by Marcel-Paul Schützenberger,
which connects regular language theory and algebraic automata theory. The
two fundamental areas of study in mathematics and theoretical computer sci-
ence hold a notable relationship, which motivated the discussion surrounding
this topic. On a high-level perspective, Schützenberger’s theorem bridges the
two areas of study using languages recognized by aperiodic monoids to re-
late them to star-free regular expressions. By outlining the essential ideas
in both automata theory and group theory, we attempt to produce a more
comprehensible document for both computer scientists and mathematicians
to discuss this topic.



Contents

1 Introduction 2
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivations and Goals . . . . . . . . . . . . . . . . . . . . . . 3

2 Notations, Definitions, and Examples 5
2.1 Finite Automata and Regular Languages . . . . . . . . . . . . 5
2.2 Detailed Examples . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Algebra: Group Theory . . . . . . . . . . . . . . . . . . . . . 15

3 Schützenberger’s theorem 20

4 Further Readings 27

5 Conclusion 28

1



Chapter 1

Introduction

1.1 Background

Mathematics is the foundation of computing, and computing is often a key
component in mathematical problem-solving. For instance, linear algebra is
heavily used in computer graphics, graph theory forms the basis of network
analysis, and number theory is used for cryptography. Such relationship
between the two disciplines has inevitably resulted in the shared interest and
involvement of both mathematicians and computer scientists in the study of
formal languages.

Formal language is composed of strings formed by letters from an alphabet
along with a specific set of properties. This concept is often introduced in
undergraduate computer science courses for its more practical connections
to the field.

This paper will specifically focus on regular languages, which are formal
languages that can be expressed using regular expressions. Regular expres-
sions describe the lexical tokens in syntactic specifications of programming
languages, describe the textual patterns that trigger processing actions in
text manipulation systems, and serve as the basis of standard utilities in
pattern matching. Regular language theory provides the theoretical basis
of pattern matching utilities including text tools awk, a text-manipulation
language, and grep, a Unix utility that searches for lines in files that match
a pattern [2]. Beyond its wide range of applications, regular languages are
an important part of theoretical computer science.

In theoretical computer science, formal language theory is closely tied

2



Algebraic Characterization of Regular Languages

to the study of computability theory and computational complexity. Com-
putability theory studies whether problems are computationally solvable us-
ing different representations of algorithms and languages, and computational
complexity considers the inherent difficulty of evaluating computational prob-
lems [1].

Regular language theory also has connections with areas of mathematics
in various fundamental fields including algebra and logic. The two areas of
study have been bridged by Marcel-Paul Schützenberger’s theorem, which
essentially relates languages recognized by aperiodic monoids with star-free
regular languages.

1.2 Motivations and Goals

Given the equivalence of regular languages and finite automata as Kleene’s
theorem [4] states along with the relationship of regular languages and finite
algebra, we were motivated to embed regular languages into a pure math-
ematical system. This paper will explore the algebraic characterization of
regular languages in order to

(1) provide computer scientists with a more comprehensible introduction
to algebraic automata theory, and to

(2) introduce mathematicians to the area of formal languages.

We believe that with the provided background in automata theory and
algebra in this paper, coupled with an explanation of star-free expressions,
establishing Schützenberger’s theorem to connect the two fields of study will
come naturally.

The contents of this paper will be organized into the following structure:

• In Section 2, we provide the background that is required for discussing
Schützenberger’s theorem.

– In Section 2.1, we introduce standard notations, definitions, and
simple examples of finite automata and regular languages.

– In Section 2.2, we give several detailed examples of regular lan-
guages, their representation in finite automata, and their monoid
representations.

Chapter 1 3



Algebraic Characterization of Regular Languages

– In Section 2.3, we introduce group theory, provide several detailed
examples of mapping strings to monoids, and finally prove that
monoids and finite automata are equivalent.

• In Section 3, we state our definition of star-free expressions, ideals of
monoids, and provide the proof of Schützenberger’s theorem in a way
that is more accessible to both mathematicians and computer scientists,
which is our major contribution in this work.

• In Section 4, we briefly discuss further readings that may inspire further
work with this subject.

• In Section 5, we conclude the work by restating the major points of
this paper.

Below is the general diagram that illustrates the sequence of the main
points that we will cover in order to successfully unpack Schützenberger’s
theorem. The idea of aperiodic monoids and star-free expressions will
be introduced in section 2.3 and section 3, respectively.

Regular
language

FSA Monoid

Star free Aperiodic

Chapter 1 4



Chapter 2

Notations, Definitions, and
Examples

The following subsections introduce the standard notations and defini-
tions this paper will follow to establish Schützenberger’s theorem. Each of
the definitions and concepts are accompanied by relevant examples.

2.1 Finite Automata and Regular Languages

Finite automata are the simplest computational model. They are used to
recognize patterns within input taken from some set of characters by accept-
ing or rejecting an input. Automata bridge the theory of formal language to
computation. From a mathematical perspective, we require a more precise,
notation-based definition of finite automata. In essence, a finite automaton
is composed of several parts: a set of states, an input alphabet, a start state,
rules that connect one state to another depending on the input symbol, and
accept states. We will use the standard definition of finite automata in this
paper:

Definition 1. [8] A finite automaton is a 5-tuple (Q, Σ, δ, q0, F), where

(i) Q is a finite set called the states,

(ii) Σ is a finite set called the alphabet,

(iii) δ : Q × Σ → Q is the transition function,

5



Algebraic Characterization of Regular Languages

(iv) q0 ∈ Q is the start state, and

(v) F ⊆ Q is the set of accept states.

From the five parts of the formal definition, we can use the notation to
describe finite automata by specifying each of the components of the 5-tuple.

Example 1. Here is a finite automaton M1.

q1start q2
b

a

b

a

Figure 2.1: State diagram of the two-state finite automaton M1

In the formal definition, M1 is ({q1, q2}, {a, b}, δ, q1, {q1}). The transition
function δ is

a b
q1 q1 q2
q2 q2 q1.

To better understand this machine, we can analyze it with an example
input string. Consider the word w = abab. The machine starts in the start
state q1, reads the first symbol of w, which is a, and proceeds to q1. It then
reads the next symbol b, proceeds to q2, reads the next symbol a, stays in
q2, and reads the last symbol b, taking us back to q1. Since q1 ∈ F, the
automaton accepts the word.

We will describe the languages using words in later sections.

Example 2. Figure 2.2 shows another finite automaton M2.

q1start q2 q3

b

a

a

b

a, b

Figure 2.2: State diagram of the three-state finite automaton M2

Chapter 2 6



Algebraic Characterization of Regular Languages

Machine M2 has three states, with a formal definition of ({q1, q2, q3}, {a,
b}, δ, q1, {q3}). The transition function δ is

a b
q1 q2 q1
q2 q2 q3
q3 q3 q3.

Take w = baa. The machine starts in the start state q1, reads the first
symbol of w, which is b, and stays in q1. It then reads the next symbol a,
proceeds to q2, and reads the last symbol a, leaving us in q2. Since q2 /∈ F,
the automaton rejects the word.

In both Example 1 and Example 2, we have given a formal definition
of the automata. We can also give a formal definition of the automata’s
computation in the following way:

Definition 2. [8] Let M = (Q, Σ, δ, q0, F ) be a finite automaton and let
w = w1w2 ... wn be a string where each wi is a member of the alphabet Σ.
Then M accepts w if a sequence of states r0, r1 ... rn in Q exists with three
conditions:

(i) r0 = q0

(ii) δ(ri, wi+1) = ri+1, for i = 0, ... , n − 1, and

(iii) rn ∈ F.

M recognizes the language A if A = {w | M accepts w}. The following
is the standard definition of regular language.

Definition 3. Given an alphabet Σ, the collection of regular languages is
defined by:

• The empty set φ and the empty string ε are regular.

• Each symbol a ∈ Σ is regular.

• If A and B are regular languages, then A • B (concatenation), A ∪ B
(union), and A∗ (Kleene star) are regular languages

Chapter 2 7



Algebraic Characterization of Regular Languages

According to Kleene’s theorem [4], a language is called a regular language
if and only if there is some finite automaton that recognizes it. In other
words, a FSA has the same expressive power as regular languages. We can
revisit the previous examples to demonstrate this theorem.

In Example 1, we can also run the machine on an input word w = aba.
This input leaves M1 in q2, so it is rejected. The machine will generally
accept only strings that have an even number of b’s. Thus, this automaton
is simply another representation of the regular language L(M1) = {w | w has
an even number of b’s}. Likewise, we can conclude that Example 2 is a
representation of the language L(M2) = {w | w contains a substring ab}.

2.2 Detailed Examples

To begin our construction of monoids from regular languages, we first
pose examples that illustrate each step of the process.

Example 3. Suppose we want to find the functional representation of the
regular language from Example 1, L(M1) = {w | w has an even number of
b’s}. Recall that the state transition table looked like this:

a b
q1 q1 q2
q2 q2 q1.

We can also sketch arrow diagrams to represent the relationship between
the states:

a

q1

q2

q1

q2

(a) mapping given the input a

b

q1

q2

q1

q2

(b) mapping given the input b

Chapter 2 8



Algebraic Characterization of Regular Languages

bb

q1

q2

q1

q2

q1

q2
bb bb

Figure 2.4: mapping given the input bb

Follow the arrows in the arrow diagram illustrating the states given input
string bb. Notice that q1 ends up back at q1 and q2 ends up back at q2. This
essentially holds the same relationship as taking the input string a. Thus,
mathematically, we can derive the equation b2 = a = e.

We now introduce a new way of representing this relationship: a monoid
multiplication table. Multiplying each of the items in the table’s rows by each
of the items in the table’s columns produces results that match the set of
equations.

a b
a a b
b b a

Monoids are the simplest algebraic object used to represent a finite state
machine. The following is a definition of monoids derived from its relationship
to semigroups:

Definition 4. [3] A semigroup is a nonempty set S together with a binary
operation on S which is associative: a(bc) = (ab)c for a, b, c ∈ G. A monoid
is a semigroup M which contains an identity element e ∈ M such that ae =
ea = a for all a ∈ M.

Note that in the example above, a acts like the identity. Thus, we can
rewrite the monoid multiplication table to the following:

e b
e e b
b b e.

Chapter 2 9



Algebraic Characterization of Regular Languages

A more detailed definition and discussion of monoids will be presented in
Section 2.3.
The following is the only monoid of size 2:

e a
e e a
a a a.

Notice that there are no identities (e) in the table other than when e · e.
This is an informal definition of aperiodic monoids, which will be discussed
in later sections. Here is another example of constructing a monoid from a
regular language.

Example 4. Derive a functional representation of the regular language of
binary modulus of 3.
This language contains all binary strings where the numerical value of the
string is a multiple of 3. For instance, the word w1 = 1001 is 9 in decimal,
and since 9 mod 3 = 0, 1001 mod 3 = 0. We say that w1 is in the language.
The word w2 = 1000 is 8 in decimal, and since 8 mod 3 = 2, 1000 mod 3
= 2. We say that w2 is not in the language. Start with sketching the finite
state automaton.

q1start q2 q3

a

b

b

a
a

b

Figure 2.5: State diagram of the three-state finite automaton M3

Here are some of the arrow diagrams that we can construct from this
finite automaton:

Chapter 2 10



Algebraic Characterization of Regular Languages

a

q1

q2

q3

q1

q2

q3

(a) mapping given the input a

b

q1

q2

q3

q1

q2

q3

(b) mapping given the input b

ab

q1

q2

q3

q1

q2

q3

q1

q2

q3

a

b

a

b

a

b

(a) mapping given the input ab

ba

q1

q2

q3

q1

q2

q3

q1

q2

q3

b

a

b

a

b

a

(b) mapping given the input ba

abab

q1

q2

q3

q1

q2

q3

q1

q2

q3

ab ab

ab ab

ab ab

(a) mapping given the input abab

baba

q1

q2

q3

q1

q2

q3

q1

q2

q3

ba ba

ba ba

ba ba

(b) mapping given the input baba

We can notice that the arrow diagram for abab produces the same result
as the arrow diagram for ba. Thus, we can create the equation abab = ba.
Likewise, baba = ab. Clearly, creating more arrow diagrams makes deriving
the set of equations much simpler. Here are more equations that represent
this diagram:

a2 = b2 = I = abba = baab
a = abb = bba = abaab
b = baa = aab

Chapter 2 11



Algebraic Characterization of Regular Languages

aba = bab
ab = baba = abaa
ba = abab.

Again, we can now represent this with a monoid multiplication table and we
conclude our example of creating a functional representation of the regular
language of binary modulus of 3:

e a b ab ba aba
e e a b ab ba aba
a a e ab b aba ba
b b ba e bab a ab
ab ab aba a ba e b
ba ba b bab e ab a
aba aba ab ba a b e

Example 5. Take the regular language of strings that contain any number
of a, an even number of b, and no c and provide a functional representation.

q1start q2

q3

b

a

b

a

c
c

a, b, c

Figure 2.9: State diagram of the three-state finite automaton M4

Again, here are the arrow diagrams that will help formulate the set of
equations:

Chapter 2 12



Algebraic Characterization of Regular Languages

a

q1

q2

q3

q1

q2

q3

(a) mapping given the input a

b

q1

q2

q3

q1

q2

q3

(b) mapping given the input b

c

q1

q2

q3

q1

q2

q3

(c) mapping given the input c

Notice that taking the function a leads a state back to itself, implying
that it is an identity function. The equations formed are:

a = e = b2, which behaves like the identity (1 ).
c = c2, which behaves like a zero (0 ).

A simple monoid multiplication table is thus formed:

a b c
a a b c
b b a c
c c c c.

Example 6. We conclude this section with another example, this time using
a nondeterministic finite automaton. Take the regular language L = {a} and
provide a functional representation.

Chapter 2 13



Algebraic Characterization of Regular Languages

q1start q2
a

Figure 2.11: State diagram of the two-state finite automaton M5

Construct the arrow diagrams that will help formulate the set of equations
for these partial functions where Σ = {a, b}:

a

q1

q2

q1

q2

(a) mapping given the in-
put a

b

q1

q2

q1

q2

(b) mapping given no in-
put

1

q1

q2

q1

q2

(c) mapping given the
identity function

Try aa on the arrow diagram,

aa

q1

q2

q1

q2

q1

q2

a a

Figure 2.13: mapping given the input aa

to note that it produces the same output as the states given the input
string a. Thus, we conclude that a = a2.

A simple monoid multiplication table can be formed, where 1 = e, m =
a, and 0 = b:

e a b
e e a b
a a b b
b b b b.

Chapter 2 14



Algebraic Characterization of Regular Languages

2.3 Algebra: Group Theory

The algebraic portion of this paper will focus on ideas and concepts mostly
from Group Theory.

First, recall the definition of monoids from section 2.2.:

A semigroup is a nonempty set S together with a binary operation on
S which is associative: a(bc) = (ab)c for a, b, c ∈ S. A monoid is a
semigroup M which contains an identity element e ∈ M such that ae
= ea = a for all a ∈ M [3].

Building on this definition, we introduce the notion of groups.

Definition 5. [3] A group is a monoid G such that for every a ∈ G there
exists an inverse element a−1 ∈ G such that a−1a = aa−1 = e.

In simpler terms, a group is a set equipped with a binary operation which
combines any two elements to form a third element such that four conditions
are satisfied: closure, associativity, identity, and invertibility. One common
example of a group is the set of integers Z which consists of the numbers
{..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...}, with the binary operation, addition.
We can show that addition does satisfy the conditions given for it to be
considered a group:

(1) Closure: For any two integers a, b ∈ Z, a + b is also an integer.

(2) Associativity: For all integers a, b and c, (a + b) + c = a + (b + c).

(3) Identity: If a ∈ Z, then 0 + a = a + 0 = a.

(4) Invertibility: For every a ∈ Z, there exists an integer b such that a +
b = b + a = 0. Such integer b is called the inverse element of a and is
denoted −a.

A finite group is a group with a finite number of elements.

Definition 6. A homomorphism is a map between two structures such that
the operations of one structure is preserved in the other.

Chapter 2 15



Algebraic Characterization of Regular Languages

Homomorphisms are primarily used in mathematics to show that two
different structures behave similarly. In this context, we use homomorphisms
between algebraic structures (monoids) and languages.

Definition 7.

• Given two semigroups S1, S2, a homomorphism between S1 and S2 is
a function h: S1 → S2 such that for all x, y ∈ S1, h(xy) = h(x )h(y).

• Σ∗ is the finitely generated free monoid over Σ.

• Given an alphabet Σ and a monoid M, a homomorphism between Σ∗

and M is a function h: Σ∗ → M such that for all x, y ∈ Σ∗, h(xy) =
h(x )h(y). Here, xy is the concatenation of x and y in Σ∗ and h(x )h(y)
is the product of h(x ) and h(y) in M. M also contains the identity
element, h(ε).

Given this definition of a homomorphism, we can now relate regular lan-
guages and subsets of Σ∗ using homomorphisms.

Definition 8. A language L ⊆ Σ∗ is regular if and only if there exists a finite
monoid M, a subset F ⊆ M, and a homomorphism h: Σ∗ → M, such that L
= h−1(F ).

Definition 9. A regular language L is aperiodic if given a finite aperiodic
monoid M, L = h−1(F ) for F ⊆ M.

Example 7. Consider the empty language L = φ. This can be represented
by a state diagram:

q0start

a, b

Figure 2.14: Finite state automata for the given language L

The simple arrow diagram depicting the states is produced as follows:

Chapter 2 16



Algebraic Characterization of Regular Languages

a, b

q0 q0

Figure 2.15: states given the input a or b

Note from the arrow diagram that the monoid is simply M = {e}, as it
takes any string in Σ∗ to its identity. Using the definition of homomorphisms
as previously discussed, we can now map the given language to the monoid
to show that the two structures are equivalent. The homomorphism is h: Σ∗

→ M = {e}, where M is finite such that L = h−1(φ). L is regular and is
recognized by any monoid M.

Example 8. Consider this simplest nontrivial example. Recall the language
from Example 6, L = {a}. From the monoid multiplication table, we can
derive the homomorphism h: Σ → M, where h(ε) = 0, h(a) = e, and h(b) =
0. M is finite such that L = h−1(a).

With the concepts and definitions presented in this section, we can now
describe the notion of aperiodicity. In Schützenberger’s theorem, we will
specifically focus on aperiodic monoids. We propose the following, more
thorough, characterization of monoids here.

Definition 10. Given a finite monoid M, M is aperiodic, if

∀a ∈ M, ∃n ∈ Z+ such that an = an+1.

Theorem 1. Given a finite monoid M, the following are equivalent.

(1) M contains no non-trivial groups, i.e., ∀G ⊆ M, if G is a group, then
G = {e}.

(2) M is aperiodic.

(3) No non-trivial element of M is invertible, i.e., @ m 6= e such that m−1

exists.

Proof. (1) ⇒ (2) If M contains no non-trivial groups, then M is aperiodic.

We will prove this by showing that ¬(2) ⇒ ¬(1).
Suppose M is periodic. By definition, ∀n ∈ M, ∃m ∈ M such that mn+1

6= mn (∗). Since M is finite, by the pigeonhole principle, mi+p = mi for some

Chapter 2 17



Algebraic Characterization of Regular Languages

smallest index i ≥ 0, period p ≥ 1. Because of ∗, we know that p 6= 1.
∴ p > 1, and M does contain a non-trivial group.

Consider the collection of elements: G = {mj : i ≤ j < i + p} =
{mi,mi+1, ...,mi+p−1}, where mi = mi+p = mi+2p = ... .

We can show that G is a group with the following conditions satisfied:

(i) Closure: First show that if k ≥ i, then mk ∈ G. Using the quotient
remainder theorem, we can derive the following:

k− i = qp + r, for 0 ≤ r < p.

Then, we can use algebra to derive:

mk = mimk−i = mimqp+r

= mi+qpmr by associativity

= mi+r,

and since r < p, we have shown that mk is in G. Now, to show closure,
we have mj1 · mj2 = mj1+j2 , and j1 + j2 ≥ i.

(ii) Identity: Using the quotient remainder theorem again, we can let
i - p - 1 = qp + r, where if r = 0, qp < i + p, and if r = p - 1, i ≥ qp.
Thus, i ≤ qp < i + p and we can conclude that mqp ∈ G.

mjmqp = (mj−imi)mqp

= mj−i(mimqp) by associativity

= mj−imi+qp

= mj−imi

= mj.

(iii) Invertibility: First show that (mqp+p−1)j · mj = mqp.

(mqp+p−1)j ·mj = mjqp+pj−j+j

= (mqp)jmpj−j+j

= mimqp−i ·mpj

= mqp.

Further, G is not the identity because since M is periodic, we know
p > 1, and thus there is at least one element in G.

Chapter 2 18



Algebraic Characterization of Regular Languages

(2) ⇒ (3) If M is aperiodic, then the only invertible element of M is the

identity.
In other words, suppose ∀ m ∈ M, ∃n ∈ Z+ ‖ mn = mn+1. Suppose an

inverse element m−1 exists. Then,

mn = mn+1

mn(m−1)n = mn+1(m−1)n

e = m.

(3) ⇒ (1) If no non-trivial element of M is invertible, then M contains

no non-trivial groups.
Given a subset A of a monoid M, the submonoid of M generated by A

is the smallest submonoid of M containing A. It is denoted by <A> and
consists of all products a1 . . . an of elements of A and the identity of M. If
m is invertible, then <m, m−1> = {mk: k ∈ Z}. This is clearly a group.
Further, if G = {e}, m = e.

(2) ⇒ (1) If M is aperiodic, M contains no non-trivial groups.

Note that this direction of the proof is not necessary.
Let G be a group of M. G ⊆ M, take any g ∈ G. Then, by aperiodicity,

∃n ∈ Z+ such that gn = gn+1 by (2).

but g has an inverse. Then,

(g−n)(gn) = (g−n)(gn+1)

(g−n+1) = (g−n+n+1)

e = g.

Given this explanation of aperiodicity in algebra, we can conclude that
the monoid defined by the language in Example 8 is aperiodic. Notice that
00 = 01 = 02, 10 = 11 = 12, and a0 = a1= a2.

Chapter 2 19



Chapter 3

Schützenberger’s theorem

The discussion of automata and algebra in Chapter 2 leads up to our
ultimate goal of this paper, establishing Schützenberger’s Theorem.

Definition 11. Given an alphabet Σ, a star-free regular expression has the
following recursive definition:

• φ (the empty set), ε (the empty string), and every a ∈ Σ are star-free
regular expressions,

• If r1 and r2 are star-free regular expressions, then (r1 + r2), r1 and
(r1r2) are star-free regular expressions.

Each star-free regular expression r over Σ defines a language L(r) ⊆ Σ∗

as follows:

• L(φ) = φ.

• For every a ∈ Σ ∪ {ε}, L(a) = a.

• If r1 and r2 are star-free regular expressions, then L((r1 + r2)) = L(r1)
∪ L(r2), L(r1) = L(r1) = Σ∗ - L(r1) and L((r1r2)) = L(r1)L(r2). [5]

Definition 12. [5] Let M be a monoid. We say that I ⊆ M is an ideal of M
if IM ⊆ I and MI ⊆ I. This can be re-written as MIM ⊆ I or equivalently
MIM = I, since e ∈ M. Note that ideals are always non-empty.

20



Algebraic Characterization of Regular Languages

Definition 13. [5] Let M be a monoid and I a nonempty ideal of M. Define
the structure <M /I , ·> whose elements are (M \ I ) ∪ {0}, where 0 6∈ S,
and whose binary operation · is defined as follows:

• x · 0 = 0 · x = 0, if x ∈ (M \ I) ∪ {0}.

• x · y = 0, if xy ∈ I.

• x · y = xy otherwise. (i.e. x, y, xy ∈ M \ I).

In the construction of the proof of Schützenberger’s Theorem, we would
ideally obtain a homomorphism that maps the structure M to M /I. Intu-
itively, we will be collapsing the ideal I to 0.

Theorem 2. If M is an aperiodic monoid and I is an ideal of M, then M/I
is an aperiodic monoid.

Proof. We already know that 0 is the identity of M/I by definition. The
only other property that it needs to satisfy is whether · is associative. These
are the cases to be considered:

• Case 1: x, y, z ∈ M \ I.
(x · y) · z = (xy)z = x (yz ) = x · (y · z ), by definition of · in M.

• Case 2: x = 0.
(x · y) · z = 0 · z = 0. Here, if yz ∈ I, y · z = 0 and thus x · (y · z ) =
x · 0 = 0. Else, y · z ∈ M \ I, and thus x · (y · z ) = 0.

• Case 3: y = 0.
(x · y) · z = 0 · z = 0 = x · 0 = x · (y · z ).

• Case 4: z = 0 follows the same proof as Case 2.

Given that M is aperiodic, the property xn+1 = xn also applies to x ∈ M \
I. We can now derive a homomorphism given an aperiodic monoid M and an
ideal I of M

h: M −→ M /I.

which is the identity on the elements of M - I and maps every element of I
to 0.

Chapter 3 21



Algebraic Characterization of Regular Languages

Definition 14. Let m be an element of a monoid M. Then, if the set

If = {m ∈ M : m 6∈ MmM }

is not empty, it is called the forbidding ideal of m. Otherwise, we say f does
not have a forbidding ideal.

In other words, the forbidding ideal is a set of all elements that cannot
generate m via multiplication. We will show that the forbidding ideal is
indeed an ideal.

Proof.

M If︸︷︷︸M ⊆ If

Mm1︸ ︷︷ ︸
M

m m2M︸ ︷︷ ︸
M

⊆ If

Then, if x ∈ Mm1m m2M, then x ∈ MmM. Further, f 6∈ If by definition.

Proof. Assume M contains a zero. We will show that If = φ if and only if
f = 0.

Recall that If = {m ∈ M : m 6∈ MmM }.
If f = 0, I0 = {m ∈ M : 0 6∈ MmM }. Since we assume that M contains

a zero, 0 is always contained in MmM. Thus, I0 = φ. If f 6= 0, 0 ∈ If . Then,
by definition, If = {0}, and thus If 6= φ.

Theorem 3. [7] Schützenberger’s Theorem A language is star-free if
and only if it is aperiodic. (F)

Proof. [⇒] We will show that all star-free languages are recognized by ape-
riodic monoids. Example 7 and 8 from Chapter 2 serve as base cases; the
empty language L = φ which is recognized by the any finite monoid M = {e}
with φ ⊆ e and h−1(φ) = φ, and the simplest nontrivial example language L
= {a} which is recognized by the aperiodic monoid illustrated in Example
6. In that example, we can further note that the base case is F = {m}, and
when given σ ∈ Σ∗, h(a) = m and h(σ) = 0 if σ 6= a. Further, the forbidding
ideal of this language is I0 = φ, I1 = {0, m}, and Im = {0}.

Chapter 3 22



Algebraic Characterization of Regular Languages

To fully establish this direction of the proof using structural induction,
we will demonstrate that the union, the complement, and the concatenation
of star-free languages recognized by finite aperiodic monoids are also recog-
nized by finite aperiodic monoids.

Union: Given two F languages, their union is F.
Let L1, L2 ⊆ Σ∗ where,

L1 = h−1(F1)

h1 : Σ∗ →M1 ⊇ F1

L2 = h−1(F2)

h2 : Σ∗ →M2 ⊇ F2.

Then, the direct product of the two monoids M =M1 ×M2 is an aperiodic
monoid (4) and the homomorphism h: Σ∗ → M1 × M2, where h(w) =
(h1(w), h2(w)) recognizes all combinations of L1 and L2 and F = {(f1, f2) :
f1 ∈ F1 or f2 ∈ F2}. To show that the intersection of two finite aperiodic
monoids is also aperiodic, we would simply use this definition and redefine F
= {(f1, f2) : f1 ∈ F1 and f2 ∈ F2}.

We will first verify that this is in fact a homomorphism, then prove the
validity of the statement 4.
Recall Definition 7, which essentially states that to verify whether h is a
homomorphism, we need to show:

h[(f1, g1) ∗ (g2, h2)] = h(f1, g1) ∗ h(f2, g2).

Proposed homomorphism: h: Σ∗ →M1 ×M2, where h(w) = (h1(w), h2(w))
Let w = xy. Then,

h(xy) = (h1(xy) , h2(xy)) definition of h

= (h1(x)h1(y) , h2(x)h2(y)) h1 and h2 are homomorphisms

= (h1(x), h2(x))(h1(y), h2(y)) by Definition 7

= h(x) · h(y) definition of h

∴ h is a homomorphism.
Now, we will show that M = M1 × M2 is an aperiodic monoid. First, to
show that it is a monoid,

w ∈ h−1(F1 × F2) ⇔ h(w) ∈ F1 ×, F2

Chapter 3 23



Algebraic Characterization of Regular Languages

⇔ h1(w) ∈ F1 & h2(w) ∈ F2

⇔ w ∈ h−11 (F1) & w ∈ h−12 (F2)
⇔ w ∈ L1 & w ∈ L2

⇔ w ∈ L1 ∩ L2

∴ h−1(F1 × F2) = L1 ∩ L2.

Suppose M1 × M2 has an invertible element. This implies that ∃ (m1, m2)
∈ M such that (m1, m2) 6= (e, e) and (m1,m2)

−1 · (m1, m2) = (e, e) by
Theorem 1. Let (m1,m2)

−1 = (a, b). Since M = M1 × M2, this produces:

am1 = e,

m1a = e,

which implies that if m1 is invertible in M1, m1 = e, and

bm2 = e,

m2b = e,

which implies that if m2 is invertible in M2, m2 = e.
∴ M1 and M2 are aperiodic.

Clearly, (m1, m2) is the identity, and thus M is aperiodic.

Complement : Given a F language, its complement is F.
Let L ⊆ Σ∗ and F ⊆ M where,

L = h−1(F )
L = h−1(F ) where F ⊆ M.

We begin by visualizing the complement of the monoid M.

A

S

A

f : A→ A

Chapter 3 24



Algebraic Characterization of Regular Languages

We will use the same homomorphism as used in Union: the direct prod-
uct of the two monoids M1 × M2 is an aperiodic monoid (4) and the homo-
morphism h: Σ∗ → M1 × M2, where h(w) = (h1(w), h2(w)) recognizes all
combinations of L1. Let S be some element of the monoid A. Then,

h−1(A− S) = A− h−1(S).

Concatenation: Given two F languages, their comcatenation is F.
This proof follows the intuition that the word w can be split into two

strings x and y. For instance, given the word w = abb, we can have the
following arrangements of the word into two split strings:

x y
ε abb
a bb
ab b
abb ε

Let L1, L2 ⊆ Σ∗ be languages recognized by finite aperiodic monoids.

L1 = h−1(F1)

h1 : Σ∗ →M1 ⊇ F1

L2 = h−1(F2)

h2 : Σ∗ →M2 ⊇ F2

Then, the powerset of the direct product of the two monoids M1 × M2 is
an aperiodic monoid and we have the homomorphism h: Σ∗ → P(M1 ×M2),
where h(w) = {(h1(x ), h2(y)): xy = w} and F = {f : f ∩ F1 × F2 6= φ}.

We will verify that P(M1 x M2) is a finite monoid.
Let S, T ⊆ M1 × M2. We need to show that three conditions are met:

closure, associativity, and identity (refer to Definition 5). S · T = {st : s
∈ S, t ∈ T} shows closure as per our definition, s and t are pairs of elements
in the monoids. Take R, another element in M1 × M2. Then, R · S · T =
{(rs)·t = r·(st): s ∈ S, t ∈ T, r ∈ R} to show associativity. The identity
element is simply {(e1, e2)}. Further, we know that we still have a finite
monoid because the size of the monoid is at most 2|M1|·|M2|.

[⇐] We will show that all finite aperiodic languages are star-free. Essen-
tially, we will be taking the inverse homomorphic image of an finite aperiodic
language to derive a star-free language.

Chapter 3 25



Algebraic Characterization of Regular Languages

star-free L ⊆ Σ∗
h

�
h−1

aperiodic M ⊇ F

In order to use induction on the size of the monoid for this direction of the
proof, we will focus on a decrease and conquer approach by taking quotients
of the monoids. In particular, we will divide the monoid by an object that is
not the identity monoid. Recall Definition 12 for the definition of an ideal;
dividing a monoid by the ideal would satisfy this condition. In Theorem 2,
we showed that dividing a monoid by the ideal produces an aperiodic monoid
and that there exists a homomorphism h: M −→ M /I. Thus, if If is an ideal
of a size greater than or equal to 2, any language that can be recognized by
If can be recognized by a smaller monoid, M/I.

For any F = f1, f2, ..., fk, h−1(F ) is the union of the sets h−1(f1), h
−1(f2),

... , h−1(fk). Thus, we can show that h−1(f ) can be expressed as a star-free
expression with languages definable using aperiodic monoids that are smaller
than M. Let L ⊆ Σ∗ be a language where given a finite aperiodic monoid M,
L = h−1(F) for some F ⊆ M. If F is the trivial monoid (L = φ or Σ∗), both
are clearly star-free languages. We can represent L as the following:

L =
⋃
f∈F

h−1(f).

Star-free languages are closed under union, and thus there is some f ∈ F
such that L = h−1(f). Since If is an ideal, if If has two or more elements,
we can use the monoid M/If to derive the homomorphism h: M → M /
If where L = h−1(x ). If If has no elements (If = φ), we have shown in
a previous proof that f = 0. The case if If has one element (If = {0}) is
detailed in Mallea’s sketch of the proof [5].

Chapter 3 26



Chapter 4

Further Readings

The readings below further provide different approaches to introducing
and proving Schützenberger’s theorem. This paper in particular aims to
cover the proof of the theorem in a more accessible way, and thus leaves out
some of the algebraic concepts that are not necessary but are helpful and
supplementary information for the development of the proof.

1. A Proof of Schützenberger’s Theorem

Alejandro Mallea’s work most closely echoes the structure of this paper.
His work provides further definitions and lemmas that are beyond the
scope of how we presented the theorem, using more algebraic concepts
in his approach to the proof. It would be helpful for one to refer to this
paper if they are seeking for a more definition-oriented reading versus
an example-oriented approach to introducing concepts.

2. Mathematical Foundations of Automata Theory

This work by Jean-Éric Pin is essentially a comprehensive textbook
covering the depths of what one would wish to learn about the algebraic
foundations of automata theory. It is a rather dense read, considering
that it is a textbook primarily composed of a lot of concepts presented
through definitions and mathematical proofs. However, it would be a
great resource for those interested in the more in-depth research on the
topic.

27



Chapter 5

Conclusion

Coupled with the Further Readings presented in the previous section,
this paper serves as a comprehensive yet simple guide to further exploration
for mathematicians and computer scientists into the study of formal lan-
guages. This work primarily presents readers with a much more comprehen-
sible and organized introduction to Schützenberger’s theorem. Through the
process, the paper presents readers with both fundamental knowledge and
examples of automata theory along with the basis of group theory required to
understand at least the higher-level proof of the theorem. This exploration
of regular languages and its applications in algebra also poses an interesting
algorithm in decidability; given a regular language L, it is now decidable to
determine whether L is star-free. Further, if the language is star-free, we can
now derive a star-free regular expression representation of L.

28



Bibliography

[1] Book, Ronald V. Formal language theory and theoretical computer science
In: Brakhage H. (eds) Automata Theory and Formal Languages 2nd GI
Conference Kaiserslautern Lecture Notes in Computer Science, vol 33.
Springer, Berlin, Heidelberg, May 20–23, 1975.

[2] Brüggemann-Klein, Anne Regular Expressions into Finite Automata El-
sevier, Theoretical Computer Science, pp. 197-213, 1993.

[3] Hungerford, Thomas W. Algebra Springer-Verlag New York, Inc., 1974 .

[4] Kleene, Stephen Cole Representation of Events in Nerve Nets and Finite
Automata Princeton University Press, Princeton, N.J., 1956.

[5] Mallea, Alejandro A Proof of Schützenberger’s Theorem Pontificia Uni-
versidad Católica de Chile, Santiago, Chile, 2012.

[6] Pippenger, Nick Theories of Computability Cambridge University Press,
1997.

[7] Schutzenberger, M.P. “On Finite Monoids Having only Trivial Sub-
groups” Information and Control 8 190-194, 1965.

[8] Sipser, Michael Introduction to the Theory of Computation Verlag Nicht
Ermittelbar, 2013.

29


